首页 > 院校资讯 > 考研大纲 >

2022考研大纲:西北师范大学2022考研 泛函分析 考试大纲

各位研友想知道2022西北师范大学考研各专业怎么复习?大纲是什么?请关注各院校2022硕士研究生考研大纲。今天,考研营小编整理了“2022考研大纲:西北师范大学2022考研 泛函分析 考试大纲”的相关内容,请持续关注!

硕士研究生招生考试

加试

泛函分析 考试大纲

(科目代码: )

学院名称(盖章): 数学与统计学院

学院负责人(签字):

编 制 时 间: 2021年 7 月2

泛函分析 考试大纲

第一章 度量空间与线性赋范空间

考试要点:

度量空间的概念,例子;度量空间中的收敛性与连续性;稠密性;可分性;Cauchy列与度量空间的完备性;压缩映像原理及其应用;线性赋范空间的概念,例子;Banach空间的概念。

考试内容:

第一节 度量空间的概念与例子

距离及度量空间的定义;例子(欧氏空间<Object: word/embeddings/oleObject1.bin>;连续函数空间<Object: word/embeddings/oleObject2.bin>;数列空间<Object: word/embeddings/oleObject3.bin>等)。

第二节 度量空间中的极限<Object: word/embeddings/oleObject4.bin>稠密性<Object: word/embeddings/oleObject5.bin>可分空间

领域的概念;收敛点列;有界集;具体空间中收敛性的意义;稠密性与可分空间的概念;不可分空间的例子。

连续映射

映射连续性的各种定义及其等价性。

Cauchy点列与完备度量空间

度量空间中Cauchy点列的概念;完备度量空间的定义;完备度量空间与不完备度量空间的各类例子;度量空间闭子空间的完备性。

度量空间的完备化

等距同构;度量空间的完备化定理;

压缩映像原理及其应用

压缩映像的定义;压缩映像原理;在隐函数定理及常微分方程中的应用。

线性空间

本节内容为线性空间的基本概念。因学生已在高等代数课程中学过有限维空间的有关内容,故只需简要回顾并强调无限维线性空间的特征即可。

线性赋范空间和Banach空间

范数,线性赋范空间和Banach空间的概念;依范数收敛;<Object: word/embeddings/oleObject6.bin>空间;<Object: word/embeddings/oleObject7.bin>空间;<Object: word/embeddings/oleObject8.bin>空间;<Object: word/embeddings/oleObject9.bin>空间;<Object: word/embeddings/oleObject10.bin>空间;<Object: word/embeddings/oleObject11.bin>空间;限维赋范空间的拓扑同构性。

考核要求:

掌握度量空间,线性赋范空间和Banach空间的概念和性质;掌握映射连续性,度量空间的完备性等概念;熟悉<Object: word/embeddings/oleObject12.bin>空间,<Object: word/embeddings/oleObject13.bin>空间,<Object: word/embeddings/oleObject14.bin>空间,<Object: word/embeddings/oleObject15.bin>空间,<Object: word/embeddings/oleObject16.bin>空间,<Object: word/embeddings/oleObject17.bin>空间;透彻理解压缩映像原理及其简单应用。能独立解答基本的习题。

第二章 线性有界算子和线性连续泛函

考试要点:

线性有界算子,线性连续泛函,线性算子空间,共轭空间。

考试内容:

第一节 线性有界算子与线性连续泛函

线性有界算子与线性连续泛函的概念,例子,有界与连续的等价性,线性有界算子零空间的性质,算子范数。

第二节 线性算子空间和共轭空间

线性算子空间的结构及其完备性,共轭空间,保距算子,同构映照,同构,一些具体空间的共轭空间。

考核要求:

掌握线性有界算子,线性连续泛函,有界性,连续性,算子范数,共轭空间,保距算子,同构映照,同构等基本概念;掌握有界与连续的等价性定理,基本定理;能够计算简单的算子范数和一些具体空间的共轭空间。能独立解答基本的习题。

第三章 内积空间和Hilbert空间

考试要点:

内积空间,投影定理,Hilbert空间,就范直交系,Hilbert空间上线性连续泛函的表示。

考试内容:

第一节 内积空间的基本概念

内积空间与Hilbert空间的定义,平行四边形公式,内积空间的判定。

第二节 投影定理

点到集合的距离,凸集,极小化向量定理,集合的正交,Hilbert空间的正交分解,投影算子及其性质。

Hilbert空间中的就范直交系

就范直交系,Fourier系数集,Bessel不等式,Parseval恒等式,完全就范直交系的定义与判定, Fourier展式,Gram-Schmidt正交化过程,Hilbert空间的同构。

Hilbert空间上的线性连续泛函

Riesz表示定理,共轭算子及其性质。

自伴算子、 酉算子和正常算子

自伴算子、 酉算子和正常算子的基本概念与简单性质。

考核要求:

掌握内积空间,Hilbert空间,平行四边形公式,就范直交系,Bessel不等式,Parseval恒等式,Fourier展式,投影算子,共轭算子,自伴算子,酉算子和正常算子等基本概念;掌握极小化向量定理,投影定理,完全就范直交系的判定定理, Riesz表示定理等基本定理的内容与证明;能独立解答基本的习题。

第四章 Banach空间中的基本定理

考试要点:

Hahn-Banach延拓定理,Riesz表示定理,线性赋范空间中的共轭算子,

泛函延拓定理

次线性泛函,Hahn-Banach泛函延拓定理的实形式、复形式及其推论

<Object: word/embeddings/oleObject18.bin>的共轭空间、Riesz表示定理

共轭算子

线性赋范空间中共轭算子的定义及性质。

纲定理和一致有界性定理

第一纲集,第二纲集,Baire纲定理, 一致有界性定理强收敛、弱收敛和一致收敛

强收敛、弱收敛、弱*收敛和一致收敛的定义,例子,相互关系,强收敛的充要条件。

逆算子定理

逆算子定理及其证明。

闭图象定理

线性算子的图象,闭算子,闭图象定理。

考核要求:

掌握本章涉及到的所有基本概念,基本定理;由于Hahn-Banach延拓定理,Riesz表示定理,Baire纲定理,逆算子定理,闭图象定理是泛函分析基础理论的主要构成部分,要求熟练掌握这些内容;能独立解答基本的习题。

第五章 线性算子的谱

考试要点:

简要介绍线性算子的谱的概念,基本性质。

谱的概念

正则算子,正则点,正则集,谱点,特征值,特征向量,点谱,连续谱,例子。

线性有界算子谱的基本性质

谱集的闭性。

考核要求:

了解线性算子的谱的概念,基本性质。

三、参考书目

1、 程其襄等,《实变函数与泛函分析基础》,高等教育出版社, 1983, 第一版。

2、 王声望, 郑维行,《实变函数与泛函分析概要》,第二册,高等教育出版社,1992,第二版。

3、 夏道行等,《实变函数论与泛函分析》,下册,高等教育出版社, 1985,第二版。

以上就是小编整理的“2022考研大纲:西北师范大学2022考研 泛函分析 考试大纲”的全部内容,更多关于西北师范大学2022考研大纲的信息,尽在“考研大纲”栏目,希望对大家有所帮助!

阅读全文
标签: 西北师范大学2022考研大纲

推荐课程

热门问答

热门资讯

首页 报考 备考 院校 专业 复试 调剂 问答