首页 > 院校资讯 > 考研大纲 >

2025考研大纲:暨南大学2025年考研自命题科目 709数学分析 考试大纲

考研大纲包含了硕士研究生考试相应科目的考试形式、要求、范围、试卷结构等指导性考研用书。今天,为了方便2025考研的学子们,小编为大家整理了“2025考研大纲:暨南大学2025年考研自命题科目 709数学分析 考试大纲”的相关内容,祝您考研成功!

暨南大学数学学科 2025年硕士研究生入学考试自命题科目

《数学分析》

考试大纲

本《数学分析》考试大纲适用于暨南大学数学学科各专业(基础数学、计算数学、概 率论与数理统计、应用数学、运筹学与控制轮)硕士研究生入学考试。数学分析是大学数学 系本科学生的最基本课程之一,也是大多数理工科专业学生的必修基础课。它的主要内容包 括极限与连续、一元函数的微分学、一元函数的积分学、无穷级数、多元函数的微分学与积 分学、含参变量积分。要求考生熟悉基本概念、掌握基本定理、有较强的运算能力和综合分 析解决问题能力。

一、 考试的基本要求

要求考生比较系统地理解数学分析的基本概念,掌握数学分析的基本理论、基本思想 和方法,具有一定的综合运用所学的知识分析问题和解决问题的能力,以便为以后继续学习 和从事科研奠定坚实的分析基础。

二、考试内容

1.极限与连续

1) 极限的 ε - δ ε -N 定义及其证明;极限的性质及运算、无穷小量的概念及基本性 质;

2) 函数的连续性及一致连续性概念,函数的不连续点类型,连续函数的性质的证明及其

应用;

3) 上、下极限概念,实数集完备性的基本定理及其应用;

4) 二元函数的极限的定义及性质,重极限与累次极限概念,二元函数的连续性概念及性

质;

5) 数列极限的计算,一元与二元函数极限的计算。

2.一元函数的微分学

1 函数的导数与微分概念及其几何意义,函数的可导、可微与连续之间的关系;

2) 求函数(包括复合函数及分段函数)的各阶导数与微分;

3Rolle中值定理、Lagrange中值定理、Cauchy中值定理、Taylor定理及其应用;

4) 用导数研究函数的单调性、极值、最值和凸凹性;

5) 用洛必达法则求不定式极限。

3 .一元函数的积分学

1) 不定积分的概念及不定积分的基本公式,换元积分法与分部积分法,求初等函数、有

理函数和可化为有理函数的不定积分;

2) 定积分的概念,可积条件与可积函数类;

3) 定积分的性质,微积分学基本定理,定积分的换元积分法和分部积分法,积分第一、

二中值定理及其应用;

4) 用定积分计算平面图形的面积、平面曲线的弧长、旋转体的体积、平行截面面积已知

的立体体积、变力做功和物体的质量;

(5) 反常积分的概念及性质,两类反常积分的比较判别法、阿贝耳判别法和狄

立克雷判别法,两类反常积分的计算。

4.无穷级数

1) 数项级数敛散性的概念及基本性质;

2) 正项级数收敛的充分必要条件、比较原则、比式判别法、根式判别法与积

分判别法;

3) 一般数项级数绝对收敛与条件收敛的概念及其相互关系,绝对收敛级数的 性质,交错级数的莱布尼兹判别法,一般数项级数的阿贝耳判别法和狄立 克雷判别法;

(4) 函数项级数一致收敛性的概念以及判断一致收敛性的 Weierstrass 别法、

Cauchy 判别法、Abel 判别法和 Dirichlet 判别法;

5) 幂级数的收敛半径、收敛域的求法,幂级数的性质与运算;函数的幂级数

展开及幂级数的和函数的性质与求法;

(6) 周期函数的 Fourier 级数展开及 Fourier 级数收敛定理。

5.多元函数的微分学与积分学

1) 多元函数的偏导数和全微分的概念、几何意义与应用,连续、可微与可偏 导之间的关系,多元函数的偏导数(包括高阶偏导)与全微分的计算,方

向导数与梯度的定义与计算;

2 多元函数的无条件极值、中值定理与泰勒公式;

3 隐函数存在定理及求隐函数的偏导数;

4 曲线的切线与法平面、 曲面的切平面与法线的求法;

5) 重积分、 曲线积分和曲面积分的概念与计算;

6) 格林公式、高斯公式和斯托克斯公式及其应用。

6 .含参变量积分

(1) 含参变量正常积分的概念及性质;

(2) 含参变量反常积分一致收敛的概念及其判别法,一致收敛的含参变量反常

积分的性质及其应用

三、 考试题型

填空题、单项选择题、计算题、证明题。

四、考试方法和考试时间

采用闭卷笔试形式,试卷满分为 150 分,考试时间为 180 分钟。

五、 主要参考教材

数学分析:《数学分析 第五版》, 上、下册,华东师范大学数学科学学院编,高等教育出 版社,2019

以上就是小编整理的“2025考研大纲:暨南大学2025年考研自命题科目 709数学分析 考试大纲”的全部内容,更多关于暨南大学研究生考试大纲,709数学分析考研大纲的信息,尽在“考研大纲”栏目,下面我们一起来看看吧!

阅读全文
标签: 709数学分析考研大纲 暨南大学研究生考试大纲

推荐课程

热门问答

热门资讯

首页 报考 备考 院校 专业 复试 调剂 问答