首页 > 院校资讯 > 考研大纲 >

2024考研大纲:宁波大学2024年考研自命题 040初试 671数学分析 考试大纲

2024年宁波大学硕士研究生招生考试初试科目

考 试 大 纲

科目代码、名称: 671数学分析

考试形式与试卷结构

试卷满分值及考试时间

本试卷满分为150分,考试时间为180分钟。

(二)答题方式

答题方式为闭卷、笔试。试卷由试题和答题纸组成;答案必须写在答题纸(由考点提供)相应的位置上。

(三)试卷题型结构

填空题,选择题,解答题,计算题,证明题,应用题。

二、考试科目简介

《数学分析》是数学专业最重要的基础课之一,是数学专业的学生继续学习后继课程的基础,它的理论方法和内容既涉及到几百年来分析数学的严谨性和逻辑性,又与现代数学的各个领域有着密切的联系。 是从事数学理论及其应用工作的必备知识。本大纲制定的的依据是①根据教育部颁发《数学分析》教学大纲的基本要求。②根据我国一些国优教材所讲到基本内容和知识点。要求考生比较系统地理解数学分析的基本概念基本理论,掌握研究分析领域的基本方法,基本上掌握数学分析的论证方法,具备较熟练的演算技能和初步的应用能力及逻辑推理能力。

三、考试内容及具体要求

第1章 实数集与函数

(1)了解实数域及性质

(2)掌握几种主要不等式及应用。

(3)熟练掌握领域,上确界,下确界,确界原理。

(4)牢固掌握函数复合、基本初等涵数、初等函数及某些特性(单调性、周期性、奇偶性、有界性等)。

第2章 数列极限

(1)熟练掌握数列极限的定义。

(2)掌握收敛数列的若干性质(惟一性、保序性等)。

(3)掌握数列收敛的条件(单调有界原理、迫敛法则、柯西准则等)。

第3章 函数极限

(1)熟练掌握使用“ε-δ”语言,叙述各类型函数极限。

(2)掌握函数极限的若干性质。

(3)掌握函数极限存在的条件(归结原则,柯西准则,左、右极限、单调有界)。

(4)熟练应用两个特殊极限求函数的极限。

(5)牢固掌握无穷小(大)的定义、性质、阶的比较。

第4章 函数连续性

(1)熟练掌握在X0点连续的定义及其等价定义。

(2)掌握间断点定以及分类。

(3)了解在区间上连续的定义,能使用左右极限的方法求极限。

(4)掌握在一点连续性质及在区间上连续性质。

(5)了解初等函数的连续性。

第5章 导数与微分

(1)熟练掌握导数的定义,几何、物理意义。

(2)牢固记住求导法则、求导公式。

(3)会求各类的导数(复合、参量、隐函数、幂指函数、高阶导数(莱布尼兹公式))。

(4)掌握微分的概念,并会用微分进行近似计算。

(5)深刻理解连续、可导、可微之关系。

第6章 微分中值定理、不定式极限

(1)牢固掌握微分中值定理及应用(包括罗尔定理、拉格朗日定理、柯西定理、泰勒定理)。

(2)会用洛比达法则求极限,(掌握如何将其他类型的不定型转化为0/0型)。

第1-6章的重点与难点

(1)重点:①基本概念:极限、连续、可导、可微。②基本定理:单调有界,柯西准则,归结原则,微分中值定理。③基本计算:求极限的方法与类型。

(2)难点:应用微分中值定理,证明问题,连续函数性质应用。

第7章 导数应用

(1)掌握单调与符号的关系,并用它证明f(x)单调,不等式、求单调区间、极值等。

(2)利用判定凹凸性及拐点。

(3)了解凸函数及性质

(4)会求曲线各种类型的渐近线性。

(5)了解方程近似解的牛顿切线法。

第8章 极限与连续(续)

(1)掌握下列基本概念:区间套、柯西列、聚点、予列。

(2)了解刻划实数完备性的几个定理的等阶性,并掌握各定理的条件与结论。

(3)学会用上述定理证明其他问题,如连续函数性质定理等。?

第9章 不定积分

(1)掌握原函数与不定积分的概念。

(2)记住基本积分公式。

(3)熟练掌握换元法、分部积分法。

(4)了解有理函数积分步骤,并会求可化为有理函数的积分。

第10章 定积分

(1)掌握定积分定义、性质。

(2)了解可积条件,可积类。

(3)深刻理解微积分基本定理,并会熟练应用。

(4)熟练计算定积分。

(5)掌握广义积分收敛定义及判别法,会计算广义积分。?

第11章 定积分应用

(1)熟练计算各种平面图形面积。

(2)会求旋转体或已知截面面积的体积。

(3)会利用定积分求孤长、曲率、旋转体的侧面积。

(4)会用微元法求解某些物理问题(压力、变力功、静力矩、重心等)。?

第12章 数项级数

(1)掌握数项级数敛散的定义、性质。

(2)熟练掌握正项级数的敛、散判别法。

(3)掌握条件、绝对收敛及莱布尼兹定理。

第7-12章的重点、难点

(1)重点:导数的应用,积分法则,微积分基本定理,数项级数敛散判别,广义积分敛散判别。

(2)难点:实数完备性定理及应用;定积分的可积性及可积极类的讨论,定积分及数项级数的理论证明,广义积分及数项级数敛散的阿贝尔,狄利克雷判别法。?

第13章 函数列与函数项级数

(1)了解函数列与函数项级之间的关系,掌握函数列及函数项级数的一致收敛定义。

(2)掌握函数列、函数项级数一致收敛的判别法。

(3)函数列的极限函数,函数项级数的和函数性质。?

第14章 幂级数

(1)熟练幂级数收敛域,收敛半径,及和函数的求法。

(2)了解幂级数的若干性质。

(3)了解求一般任意阶可微函数的幂级数展式的方法。特别牢固记住六种基本初等函数的马克劳林展式。

(4)会利用间接法求一些初等函数的幂级数展式。?

第15章 付里叶级数

(1)熟记付里叶系数公式,并会求之。

(2)掌握以2π为周期函数的付里叶展式。

(3)理解掌握定义在(0,1)上的函数可以展成余弦级数,正弦级数,一般付里叶级数。

(4)了解收敛性定理,并掌握,贝塞尔不等式,勒贝格引理等。

第16章 多元函数极限与选择

(1)了解平面点集的若干概念。

(2)掌握二元函数二重极限定义、性质。

(3)掌握二次极限,并掌握二重极限与二次极限的关系。

(4)掌握二元连续函数的定义、性质。

(5)了解二元函数关于两个变量全体连续与分别连续的关系。?

第17章 多元函数微分学

(1)熟练掌握,可微,偏导的意义。

(2)掌握二元函数可微,偏导,连续以及偏导函数连续,概念之间关系。

(3)会计算各种类型的偏导,全微分。

(4)会求空间曲面的切平面,法线。空间曲线的法平面与切线。

(5)会求函数的方向导数与梯度。

(6)会求二元函数的泰勒展式及无条件极值。?

第18章 隐函数定理及其应用

(1)掌握由一个方程确定的隐函数的条件,隐函数性质,隐函数的导数(偏导)公式。

(2)掌握由m个方程n个变元组成方程组,确定n-m个隐函数组的条件,并会求这n-m个隐函数对各个变元的偏导数。

(3)会求空间曲线的切线与法平面。

(4)会求空间曲面的切平面与法线。

(5)掌握条件极值的拉格朗日数乘法。?

第19章 向量函数微分(一般了解)

第13-19章 重点、难点

(1)重点:函数列、函数项级数一致收敛的判别,求幂级数的收敛域,和函数及其性质,幂级数展式,多元函数极限,连续、偏导、可微概念。计算部分:求各类偏导,全微分,求方向导数与梯度,求方程(组)确定隐函数(组)的偏导。应用部分;无条件极值,条件极值,曲线的切线与法平向,曲面的切平面与法线。

(2)难点:函数列与函数项级数一致收敛判别及性质,条件极值。?

第20章 重积分

(1)了解二重积分,三重积分定义与性质。

(2)掌握二重积分的换序,变量代换的方法。

(3)了解三重积分的换序,会用球、柱、广义球坐标进行代换计算三重积分。

(4)含参量正常积分的定义及性质。

(5)重积分应用:求曲面面积,转动惯量,重心坐标等。?

第21章 含参量非正常积分

(1)掌握含参量非正常积分一致收敛定义、性质。

(2)掌握含参量非正常积分一致收敛判别。

(3)会用积分号下求导、积分号下做积分方法计算一些定积分或广义积分。

(4)了解欧拉积分,递推公式及性质。?

第22章 曲线积分与曲面积分

(1)熟练掌握第一、二型曲线、曲面积分的计算方法。

(2)了解两种曲线积分,两种曲面积分关系。

(3)熟练运用格林公式,高斯公式,斯托克斯公式计算。

(4)掌握积分与路径无关的条件。

(5)了解场论初步知识,并会求梯度,散度,旋度。

第20-22章的重点和难点

(1)重点:二重积分换序,计算方法;曲线,曲面积分的计算。格林公式,高斯公式,斯托克斯公式的应用,积分与路径无关性质的应用。

(2)难点:含参量广义积分的一致收敛判别,三重积分的换序,重积分的应用。?

参考教材或主要参考书

《数学分析(上、下)》,陈传璋等编著(第四版),高等教育出版社,2018

阅读全文
标签: 宁波大学2023年考研大纲

推荐课程

热门问答

热门资讯

首页 报考 备考 院校 专业 复试 调剂 问答